STA:Stability AI 连扔两个王炸!首个开源 RLHF 模型登基,DeepFloyd IF 像素级出图

来源:新智元

开源先锋StabilityAI一天扔了两枚重磅炸弹:发布史上首个开源RLHF大语言模型,以及像素级图像模型DeepFloydIF。开源社区狂喜!

最近,大名鼎鼎的StableDiffusion背后的公司,一连整了两个大活。

首先,StabilityAI重磅发布了世上首个基于RLHF的开源LLM聊天机器人——StableVicuna。

StableVicuna基于Vicuna-13B模型实现,是第一个使用人类反馈训练的大规模开源聊天机器人。

有网友经过实测后表示,StableVicuna就是目前当之无愧的13BLLM之王!

对此,1xexited创始人表示,这可以看作是自ChatGPT推出以来的第二个里程碑。

另外,StabilityAI发布了开源模型DeepFloydIF,这个文本到图像的级联像素扩散模型功能超强,可以巧妙地把文本集成到图像中。

这个模型的革命性意义在于,它一连解决了文生图领域的两大难题:正确生成文字,正确理解空间关系!

秉持着开源的一贯传统,DeepFloydIF在以后会完全开源。

StailibityAI,果然是开源界当之无愧的扛把子。

StableVicuna

世上首个开源RLHFLLM聊天机器人StableVicuna,由StabilityAI震撼发布!

波卡平行链Astar Network推出“Astar 2.0 Vision”:金色财经报道,波卡平行链Astar Network创始人Sota Watanabe在社交媒体宣布推出项目新愿景“Astar 2.0 Vision”,其中概述了符合该组织战略的生态系统长期目标,包括重新设计代币经济、组织架构和技术基础等。据悉,Astar Network原生代币ASTR的通胀率、gas费率和质押奖励等关键参数将会有所优化,同时Astar Link将不再局限于游戏领域并拟拓展企业服务市场,此外Astar基金会和Startale Labs还宣布与日本行业巨头丰田汽车公司和索尼网络通信公司达成合作。[2023/7/27 16:02:50]

一位Youtube主播对StableVicuna进行了实测,StableVicuna在每一次测试中,都击败了前任王者Vicuna。

所以这位Youtuber激动地喊出:StableVicuna就是目前最强大的13BLLM模型,是当之无愧的LLM模型之王!

StableVicuna基于小羊驼Vicuna-13B模型实现,是Vicuna-13B的进一步指令微调和RLHF训练的版本。

而Vicuna-13B是LLaMA-13B的一个指令微调模型。

从以下基准测试可以看出,StableVicuna与类似规模的开源聊天机器人在整体性能上的比较。

数据:StarkNet锁仓额接近200万美元,近7日增幅达37%:10月25日消息,L2BEAT数据显示,StarkNet当前锁仓额接近200万美元,为197万美元,近7日增加幅度达37%。[2022/10/25 16:38:11]

StableVicuna可以做基础数学题。

可以写代码。

还能为你讲解语法知识。

开源聊天机器人平替狂潮

StabilityAI想做这样一个开源的聊天机器人,当然也是受了此前LLaMa权重泄露引爆的ChatGPT平替狂潮的影响。

从去年春天Character.ai的聊天机器人,到后来的ChatGPT和Bard,都引发了大家对开源平替的强烈兴趣。

这些聊天模型的成功,基本都归功于这两种训练范式:指令微调和人类反馈强化学习(RLHF)。

这期间,开发者一直在努力构建开源框架帮助训练这些模型,比如trlX、trl、DeepSpeedChat和ColossalAI等,然而,却并没有一个开源模型,能够同时应用指令微调和RLHF。

大多数模型都是在没有RLHF的情况下进行指令微调的,因为这个过程十分复杂。

最近,OpenAssistant、Anthropic和Stanford都开始向公众提供RLHF数据集。

StabilityAI把这些数据集与trlX提供的RLHF相结合,就得到了史上第一个大规模指令微调和RLHF模型——StableVicuna。

StarkWare正式发布StarkEx V4.5版,支持Volition、ERC-1155和交易捆绑:6月23日消息,零知识证明研发机构 StarkWare 宣布正式发布 StarkEx V4.5 版,该版本支持混合??链上(Rollup 模式)和链下数据(Validium 模式)解决方案 Volition,允许用户在每次交易时自行选择将数据存储至链上或者链下,还完全支持 ERC-1155 代币和交易捆绑。

StarkWare 表示,之后将实现 StarkNet 上的 L3 StarkEx、StarkEx 高吞吐量和支持 ERC-1155 的铸造,其中,StarkNet 上的 L3 StarkEx 可与 StarkNet 应用直接实现互操作性,还能降低证明和更新新状态的 Gas 成本和使状态更新的延迟更低。[2022/6/23 1:27:40]

训练过程

为了实现StableVicuna的强大性能,研究者利用Vicuna作为基础模型,并遵循了一种典型的三级RLHF管线。

Vicuna在130亿参数LLaMA模型的基础上,使用Alpaca进行调整后得到的。

他们混合了三个数据集,训练出具有监督微调(SFT)的Vicuna基础模型:

OpenAssistantConversationsDataset(OASST1),一个人工生成的、人工注释的助理式对话语料库,包含161,443条消息,分布在66,497个对话树中,使用35种不同的语言;

GPT4AllPromptGenerations,由GPT-3.5Turbo生成的437,605个提示和响应的数据集;

Alpaca,这是由OpenAI的text-davinci-003引擎生成,包含52,000条指令和演示的数据集。

研究者使用trlx,训练了一个奖励模型。在以下这些RLHF偏好数据集上,研究者得到了SFT模型,这是奖励模型的基础。

OpenAssistantConversationsDataset(OASST1),包含7213个偏好样本;

WeStarter即将上线xNFT Protocol兑换:据官方消息,WeStarter将于新加坡时间7月30日17:00上线WeStarterxNFT Protocol兑换(代币XNFT),白名单池总兑换额度共12500枚XNFT等值1万USDT,采用WeStarter原生代币WAR进行兑换;公开兑换池兑换额度共25000枚XNFT等值2万USDT,采用USDT进行兑换。

据悉,xNFTProtocol致力于实现NFT的快速发行与自动化交易协议。[2021/7/25 1:14:02]

AnthropicHH-RLHF,一个关于AI助手有用性和无害性的偏好数据集,包含160,800个人类标签;

斯坦福人类偏好(SHP),这是一个数据集,包含348,718个人类对各种不同回答的集体偏好,包括18个从烹饪到哲学的不同学科领域。

最后,研究者使用了trlX,进行近端策略优化(ProximalPolicyOptimization,PPO)强化学习,对SFT模型进行了RLHF训练,然后,StableVicuna就诞生了!

据StabilityAI称,会进一步开发StableVicuna,并且会很快在Discord上推出。

另外,StabilityAI还计划给StableVicuna一个聊天界面,目前正在开发中。

相关演示已经可以在HuggingFace上查看了,开发者也可以在HuggingFace上下载模型的权重,作为原始LLaMA模型的增量。

但如果想使用StableVicuna,还需要获得原始LLaMA模型的访问权限。

获得权重增量和LLaMA权重后,使用GitHub存储库中提供的脚本将它们组合起来,就能得到StableVicuna-13B了。不过,也是不允许商用的。

动态 | Blockstack通过受监管的代币发售筹集到超2300万美元:分布式计算网络Blockstack的代币发售计划于9月9日结束。Blockstack PBC的联合创始人兼首席执行官Muneeb Ali在发文称,Blockstack在代币发售中已经筹集了超过2300万美元,其中包括美国SEC认证的和其向美国境外的投资者提供的代币发售(根据Regulation S)。超过4,500名个人和实体参与此次代币发售,投资者包括Union Square Ventures,Lux Capital,Recruit Holdings,Arrington Capital,Hashkey Group,Fenbushi Capital,Frontier Ventures,Spartan Group等基金。(Coindesk)[2019/9/11]

DeepFloydIF

在同一时间,StabilityAI还放出了一个大动作。

你敢信,AI一直无法正确生成文字这个老大难问题,竟然被解决了?

没错,下面这张「完美」的招牌,就是由StabilityAI全新推出的开源图像生成模型——DeepFloydIF制作的。

除此之外,DeepFloydIF还能够生成正确的空间关系。

模型刚一发布,网友们已经玩疯了:

prompt:Robotholdinganeonsignthatsays"Icanspell".

不过,对于prompt中没有明确说明的文字,DeepFloydIF大概率还是会出错。

prompt:AneonsignofanAmericanmotelatnightwiththesignjavilop

官方演示

顺便一提,在硬件的需求上,如果想要实现模型所能支持的最大1,024x1,024像素输出,建议使用24GB的显存;如果只要256x256像素,16GB的显存即可。

是的,RTX306016G就能跑。

代码实现:https://gist.github.com/Stella2211/ab17625d63aa03e38d82ddc8c1aae151

开源版谷歌Imagen

2022年5月,谷歌高调发布了自家的图像生成模型Imagen。

根据官方演示的效果,Imagen不仅在质量上完胜OpenAI最强的DALL-E2,更重要的是——它能够正确地生成文本。

迄今为止,没有任何一个开源模型能够稳定地实现这一功能。

与其他生成式AI模型一样,Imagen也依赖于一个冻结的文本编码器:先将文本提示转换为嵌入,然后由扩散模型解码成图像。但不同的是,Imagen并没有使用多模态训练的CLIP,而是使用了大型T5-XXL语言模型。

这次,StabilityAI推出的DeepFloydIF复刻的正是这一架构。

甚至在测试中,DeepFloydIF凭借着COCO数据集上6.66的zero-shotFID分数,直接超越了谷歌的Imagen,以及一众竞品。

下一代图像生成AI模型

具体来说,DeepFloydIF是一个模块化、级联的像素扩散模型。

模块化:

DeepFloydIF由几个神经模块组成,它们在一个架构中相互协同工作。

级联:

DeepFloydIF以多个模型级联的方式实现高分辨率输出:首先生成一个低分辨率的样本,然后通过连续的超分辨率模型进行上采样,最终得到高分辨率图像。

扩散:

DeepFloydIF的基本模型和超分辨率模型都是扩散模型,其中使用马尔可夫链的步骤将随机噪声注入到数据中,然后反转该过程从噪声中生成新的数据样本。

像素:

DeepFloydIF在像素空间工作。与潜在扩散模型不同,扩散是在像素级别实现的,其中使用潜在表征。

上面这个流程图展示的就是,DeepFloydIF三个阶段的性能:

阶段1:

基本扩散模型将定性文本转换为64x64图像。DeepFloyd团队已经训练了三个版本的基本模型,每个版本都有不同的参数:IF-I400M、IF-I900M和IF-I4.3B。

阶段2:

为了「放大」图像,团队将两个文本条件超分辨率模型应用于基本模型的输出。其中之一将64x64图像放大到256x256图像。同样,这个模型也有几个版本:IF-II400M和IF-II1.2B。

阶段3:

应用第二个超分辨率扩散模型,生成生动的1024x1024图像。最后的第三阶段模型IF-III拥有700M参数。

值得注意的是,团队还没有正式发布第三阶段的模型,但DeepFloydIF的模块化特性让我们可以使用其他上采样模型——如StableDiffusionx4Upscaler。

团队表示,这项工作展示了更大的UNet架构在级联扩散模型的第一阶段的潜力,从而为文本到图像合成展示了充满希望的未来。

数据集训练

DeepFloydIF是在一个定制的高质量LAION-A数据集上进行训练的,该数据集包含10亿对。

LAION-A是LAION-5B数据集英文部分的一个子集,基于相似度哈希去重后获得,对原始数据集进行了额外的清理和修改。DeepFloyd的定制过滤器用于删除水印、NSFW和其他不适当的内容。

目前,DeepFloydIF模型的许可仅限于非商业目的的研究,在完成反馈的收集之后,DeepFloyd和StabilityAI团队将发布一个完全免费的商业版本。

参考资料:

https://stability.ai/blog/stablevicuna-open-source-rlhf-chatbot

https://stability.ai/blog/deepfloyd-if-text-to-image-model

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

链链资讯

[0:0ms0-5:370ms