文章来源于遇见数学,作者遇见数学翻译小组
翻译:姚高华校对:李千蔚
英文:https://sourl.cn/qZZiVA
杨辉三角形,又称帕斯卡三角形、贾宪三角形、海亚姆三角形,它的排列形如三角形。因为首现于南宋杨辉的《详解九章算法》得名,而书中杨辉说明是引自贾宪的《释锁算书》,故又名贾宪三角形。古代波斯数学家欧玛尔·海亚姆也描述过这个三角形。在欧洲,因为法国数学家布莱兹帕斯卡在1653年的《论算术三角》中首次完整论述了这个三角形,故也被称作帕斯卡三角(Pascal'striangle)。
杨辉三角的前10行写出来如下:
杨辉三角的构建
在最上面一行的中央写下数字1第二行,写下两个1,和上一行形成三角形随后的每一行,开头和最后的数字都是1,其他的每个数都是它左上方和右上方的数之和,就是说除每行最左侧与最右侧的数字以外,每个数字等于它的左上方与右上方两个数字之和。
Coinbase用户已向一YouTube局转账超94万枚XRP:XRPlorer创始人Thomas Silkj?r表示,YouTube平台上一个虚假的XRP赠送局仍在活跃,者的目标为Coinbase、Kraken、Uphold、Crypto.com、Binance、Kraken和Litebit交易所的用户。Thoma最近的一条推特指出,仅Coinbase用户向该局转账的XRP就已经超过了94万枚。(U.Today)[2020/8/17]
左对齐后的杨辉三角
前两列倒没什么特别的地方,第一列均为1,第二列则为自然数。而第三列就是三角形数(Triangularnumber)。你可以想到,三角数就是能够组成大大小小等边三角形的点的数目,如下图所示。
数据:Arbitrum Nova桥接存储ETH总量突破2万枚:金色财经报道,据Dune Analytics最新数据显示,Arbitrum基于AnyTrust技术的新链Arbitrum Nova桥接存储ETH总量已突破2万枚,本文撰写时达到20,311枚,按照当前价格计算约合3700万美元,其桥接交易总量达到197,27 笔,ETH存储独立用户量为164,587个。此外,当前Arbitrum One桥接存储ETH总量已接近250万枚,桥接交易总量为1,017,515笔。[2023/5/20 15:15:37]
三角形数(图自维基)
类似地,第四列是四面体数(Tetrahedralnumber),也叫三角锥体数。顾名思义,它们代表由三角形构成的四面体所需要的点的数目,四面体数每层为三角形数。
声音 | Ripple首席执行官:其他银行不会使用JPM Coin:旧金山区块链创业公司Ripple的首席执行官Brad Garlinghouse近日对摩根大通创建自己的稳定币给予了“有保留的赞扬”,同时他否认了该产品被其他银行采用的可能性,并质疑其实用性。Garlinghouse表示,他认为有像摩根大通这样的主要金融机构“参与进来”是“很棒的”。但是,他很快补充说:“这是我要说的唯一一件好事。”。“有个来自摩根士丹利的家伙采访我,我说‘那么,摩根士丹利会使用JPM Coin吗?他说,“可能不会。”那么,花旗会使用吗?西班牙对外银行?答案都是否定的。”“如果你给他们一美元存款,他们就会给你一枚JPM作为凭证,然后你就可以用JPM在分类账中移动。等一下,用美元!”他说。“我不明白。如果你只是在JPM分类账中移动,而且必须是美元对美元、一对一的支持,我不明白这会解决什么问题。”[2019/3/10]
CoinEgg发放比特币糖果Bitcoin Pay(BTP)公告:CoinEgg将于北京时间2017年12月18日(周一)15:00发放比特币糖果Bitcoin Pay(BTP),并开启\"BTP/BTC和\"BTP/USC\"的交易对。[2017/12/18]
图自维基
秘密Billions项目组3:11的幂
杨辉三角还揭示了11为底的幂的值。你要做的就是将每一行的数字挤压到一起。前5行足够简单,但出现两位数的时候该怎么办呢?
事实证明,你要做的就是将十位数加到它左侧数字上,比如下图所示的是第六行中出现了上面的情况,如何进行移动以获得11的值
如果出现了三位数同样进位处理即可。
秘密Billions项目组5:斐波那契数列
为了揭示隐藏的斐波那契数列,将左对齐的杨辉三角对角线相加。比如下图杨辉三角中发现的斐波那契数列前九个数:1,1,2,3,5,8,13,21,34…
按线条所示相加结果即为斐波那契数列(图自维基)
秘密Billions项目组7:组合数学
或许杨辉三角中发现的最有趣的关系就是我们如何利用它找到组合数。
杨辉三角的前六行写成组合数的表达形式
回忆一下从n个不同元素中选k个元素的组合公式。我们发现,对于杨辉三角中的每一行数字,从零开始计数,n是行数,k是在这一行中的位置。
所以,如果你想计算4选2,看第5行,第3个数,你会发现,答案是6.
秘密Billions项目组9:二项式定理
(x+y)的幂运算是很酷,但我们多久才会需要解这样的题呢?很有可能,不太经常需要。如果我们能够从上一个章节的结论中总结出一个更有用的形式,会不会更方便?好吧,其实这就是二项式定理:
这个公式也称二项式公式或二项恒等式。
秘密#10:与概率之间的联系—二项式分布
二项式分布描述了具有两种可能结果的实验的概率分布。事实上,杨辉三角的每一行也能揭示了这样的清晰,以最经典就是扔一枚硬币为例吧。
如果考虑抛3次硬币,就会有8种可能发生的事件:
但其实可以分为4类情况:
3次反面——只有1次发生2次正面和1次反面——有3次发生2次反面和1次正面——有3次发生3次正面——只有1次发生这注意1,3,3,1正是杨辉三角的第4行。同样如果抛5次硬币,出现3正2反的事情会出现10次,这也是出现在了杨辉三角第6行。
如果设抛硬币得到正面概率为p,反面概率为1–p。想知道扔到正面的可能性,我们可以使用二项式分布的概率质量函数找到概率的分布,其中n是试验次数,k是成功次数。
二项式分布的概率质量函数
嗨,这看起很熟悉啊!这几乎和我们前面提到的二项式定理是一样的公式,只是没有求和公式,同时和被和代替了。
假设成功的概率是0.5(p=0.5),我们计算扔到正面0次、1次、2次、3次的概率。
在公式中代入n=3、k=0,1,2,3,得到下面计算结果,请注意杨辉三角里的组合数:1,3,3,1:
扔到正面0次、3次的可能性都是12.5%,而扔到正面1次、2次的可能性都是37.5%,这与上面分析结果是一致的。
这便是看似简单的杨辉三角里的10个秘密,是不是很精彩啊!但这并非终点,它还有另外更神奇的性质隐藏其中,等待我们未来继续探索吧。
来源:遇见数学
编辑:他和猫
↓点击标题即可查看↓
1.套娃吗?你先看这个岛中湖中岛中湖中岛
2.都靠这位天才科学家20岁时的论文,你才能用手机拍照发朋友圈
3.朝天空开,子弹掉下来还有杀伤力吗?|No.206
4.乐高还能悬浮在半空中?上百万人已看懵!
5.古装片的射箭动作把物理学家看笑了,导演咱能不能专业点?
6.即使被它淹没也不会窒息,这是什么神奇液体?
7.数学课上捡了个橡皮,勾股定理就看不懂了
8.物理学写给你的情书
9.唯一两次获得诺贝物理学奖的人,你却不一定认识他
10.妈妈问我的桌子为什么这么乱!
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。