LIC:深入理解零知识证明算法之Zk-stark:Low Degree Testing

前言

本系列的第二篇文章,以超市收据为例,描述了Arithmetization的具体过程。本文将以另外一个例子为基础,在回顾Arithmetization过程的同时,将内容引申到多项式的LDT过程。

新的实例

AliceClaim:“我有1000,000个数,他们都在范围内”。为了方便验证者Bob验证,Alice首先要对Claim进行Arithmetization转换。过程如下图1所示(图中:黑色箭头代表主流程,红色箭头代表附加说明信息,黄色圈对应下面详细说明的索引)

下面具体说明一下对应流程:

首先生成执行轨迹(EXCUTETRACE),事实上,它是一张表,总共有1000,000行;生成多项式约束(PolynomialConstrains),多项式约束满足执行轨迹的每一行(个人理解:步骤1,2没有一定的先后依赖关系,只是习惯上先生成执行轨迹,再生成约束多项式);对执行轨迹进行插值,得到一个度小于1000,000的多项式P(x)、x取值,并计算更多点上的值,x取值范围扩大到(Reed-Solomen系统编码);假如,证明者有一个值不在范围内(图中红线1/2所示),假如就是第1000,000个点,它实际的值是13,大于9,其插值后的曲线G(x)如图所示,图中P(x)为有效曲线,G(x)为无效曲线。可以看出,两条曲线在变量x取值范围内,最多有1000,000个交点,即有1000,000,000-1000,000个点不同,这很重要。将插值后的多项式P(x)和多项式约束进行组合变换,最终得到的形式为:

北京方正公证处杨和平:与腾讯在多个方面达成深入合作:金色财经报道,4月17日,腾讯安全领御区块链-北京方正公证取证平台正式发布。在发布会上,北京方正公证处副主任杨和平表示:“区块链作为一种可以在完全不信任的节点之间建立信任机制的技术,具有高可靠度、高透明度、可追溯、永久保存和无法篡改的特性,这些特性与公证的职业要求和行业发展需求具有天然的融合性、互补性,特别是在公证三大效力之一的证据效力方面双方高度契合。腾讯安全与北京市方正公证处联合打造的领御区块链北京方正公证取证平台,就是要在深度整合两者优势基础上通过国家公信力+技术信任力的双重增信,向社会提供电子证据安全存储、取证维权、在线公证等智能化服务,从而形成一套规范和标准的互联网数据公证服务新模式。”

此外,北京方正公证处副主任杨和平还介绍说,未来方正公证处与腾讯将在以下几方面进行深度合作:1、构件新型公证法律服务业态上进行新的探索;2、拓展公证服务领域上取得新的突破;3、提升公证服务效率上再上新台阶;4、人才培养方面积累新经验;5、体制机制建设上走出新路子;6、公证服务助力互联网方面走出新天地。[2020/4/17]

Q(P(x))=Ψ(x)*T(x),其中T(x)=(x-1)(x-2)……(x-1000,000),x取值

其中,d(Q(P(x)))=10,000,000、d(Ψ(x))=10,000,000-1000,000、d(T(x))=1000,000;

至此,问题就转化成了,Alice宣称“多项式等式在变量x取值范围内成立”的问题。那么验证者Bob该如何验证呢?具体过程如下:证明者Alice在本地计算多项式P(x)、Ψ(x)在所有点上的取值,对!从1至1000,000,000,并形成一个默克尔树;验证者Bob随机的从内选取一个值ρ,并发送给证明者Alice,要求其返回对应的信息;证明者Alice返回P(ρ)、Ψ(ρ)、root、AuthorizedPath(P(ρ)、Ψ(ρ))给验证者Bob;验证者Bob首先根据默克尔树验证路径验证值P(ρ)、Ψ(ρ)的有效性,然后等式Q(P(ρ))=Ψ(ρ)*T(ρ),如果成立,则验证通过;

Aurora向白帽黑客奖励100万美元:9月29日消息,Aurora向一名通过Immunefi报告错误的白帽黑客奖励100万美元,以Aurora代币的形式支付。

据悉,白帽黑客在6月10日通过Immunefi向Aurora提交了一个严重漏洞,目前该漏洞已修复。[2022/9/29 6:02:07]

完整性分析:如果验证者Alice是诚实的,那么等式Q(P(x))一定会被目标多项式T(x)整除,因此必定存在一个d(Ψ(x))=d(Q(P(x)))-d(T(x))的多项式Ψ(x),满足Q(P(x))=Ψ(x)*T(x),因此对于任意的x,取值在之间,等式都会成立;

可靠性分析:如果验证者Alice是不诚实的,即类似于步骤3里的假设,在x=1000,000上,P(x)的取值为13,那么Q(P(1000,000))!=0,但是等式右边,T(1000,000)=0,因此Q(P(x))!=Ψ(x)*T(x),即等式两边是不相等的多项式,其交点最多有10,000,000个,因此通过一次随机选取,其验证通过的概率仅为10,000,000/1000,000,000=1/100=0.01,经过k次验证,其验证通过的概率仅是1-10(^-2k);

上述的验证过程为交互式的,如果是非交互式的,可以利用Fiat-Shamirheuristic进行变换,以默克尔树的根作为随机源,生成要查询的随机点;

LDT

我们忽略了一种攻击方式,即针对每一个数x,证明者都随机生成p,然后根据Ψ(x)=Q(p)/T(x),这些点不在任何一个度小于1000,000的多项式上,但是可以通过验证者验证。如下图2所示:

声音 | 香港金融发展局董事:香港金融服务的质量将随着区块链等应用的深入进一步提升:据新华网报道,中共中央、国务院日前印发了《粤港澳大湾区发展规划纲要》,大湾区共同家园投资有限公司总裁、香港金融发展局董事胡章宏表示,伴随新的政策出台,大湾区建设国际科技创新中心,香港打造一系列新的中心、平台以及发展特色金融等目标的推进,香港金融体系的结构将愈发丰富。随着区块链等科技应用的深入以及金融科技等新业态的不断培育,香港金融服务的质量和效率也将进一步提升。[2019/2/21]

图中:紫色的点为随机生成的点p,这些点大概率不在一个度小于1000,000的多项式上(事实上,可以不考虑前1000,000个点,因为验证者只会从范围内取值)。因为即使选择1000,000个点插值出一个度小于1000,000的多项式,也不能保证其他的点在这个多项式上,因为其他的点是随机生成的。因此,需要有一种方式,保证证明者P(x)的度是小于1000,000,Ψ(x)的度小于10,000,000-1000,000。这就是LDT的目标,那LDT具体的过程是怎么样的呢?请继续往下看。

举个栗子,如果Alice想证明多项式f(x)的度是小于3的,即有可能是2次的或者是1次的。一般流程如下:

验证者Bob随机选取三个值a,b,c,发送给证明者Alice;证明者Alice返回f(a),f(b),f(c);验证者Bob插值出度小于3的多项式g(x),然后再随机选取一个点d,发送给证明者;证明者Alice返回f(d);验证者Bob比对f(d)和g(d)的值,如果相等,则证明成立。

回归到一般情况,其过程可以用下图3表示:

今晚8点袁煜明将做客《金色讲堂》 深入解读“什么是区块链思维”:今晚20:00,火币区块链应用研究院院长袁煜明将做客《金色讲堂》深入解读“什么是区块链思维”。袁煜明将从股份制的种种弊端出发对区块链的出现给行业所带来的改变进行一一讲解。同时,袁煜明还会对区块链机制目前所存在的问题进行全方位的解读。详情请关注今晚8:00的《金色讲堂》。[2018/4/10]

可以看出,如果D很大,Alice和Bob交互的次数则为D+k次,复杂度很高;有没有一种办法,使得两者之间交互的次数小于D的情况下,使得验证者相信多项式的度是小于D的,直接返回小于D个点肯定是不行的,因为那不能唯一确定一个度小于D的多项式,因此需要证明者需要额外发送一些辅助信息。下面我们以P(x)为例,详细阐述这个过程(事实上,应该是证明P(x)和Ψ(x)的线性组合小于10,000,000-1000,000,本文重点是LDT,因此只以P(x)为例,这并不影响对LDT的理解)。

假如P(x)=x+x^999+x^1001+x^999999=x+x^999+x*x^1000+x^999*(x^1000)^999;此时,我们找到一个二维多项式G(x,y),取值范围分别是、,满足:G(x,y)=x+x^999+x*y+x^999*y^999可以发现,当y=x^1000时,满足:G(x,y)=G(x,x^1000)=x+x^999+x*x^1000+x999*(x^1000)^999=P(x)如果我们能证明G(x,y)相对的x,y的最高度都是小于1000,因为P(x)=G(x,x^1000)上,因此可以相信P(x)的度小于1000,000;如图4所示:

马耳他区块链暨比特币大会:深入探讨国家区块链战略及数字货币立法问题:上周,在马耳他圣朱利安举办了马耳他区块链暨比特币大会(Blockchain & Bitcoin Conference Malta),对涉及加密数字货币、区块链和ICO等问题进行了深入探讨。马耳他政府的高级官员和国家区块链战略制定者们出席了本次会议。据悉,本次大约吸引400位业内人士参会,包括行业开发人员、投资人、企业家、银行和信贷机构代表、以及金融科技专家、律师和记者等。观众听取了20位嘉宾的演讲,同时也有15家公司登台进行了展示。[2017/12/13]

验证者把所有的点都计算好,形成一颗默克尔树。验证者随机选择一行和一列,如图中红线1/2所示,对于每一列,它是由关于y的度小于1000的多项式生成,对于每一行,它是由关于x的度小于1000的多项式生成。验证者从行/列中随机选择1010个点,用来验证对应行/列上的点是否在度小于1000的多项式上,需要注意的是,因为P(x)的点都在上图的对角线上,因此我们要确保每一行/列对应的对角线上的点也在对应的度小于1000的多项式上,即1010个里面一定要包含对角线的点。

可靠性分析:如果原始多项式的度实际上是小于10^6+10999,即P(x)=x+x^999+x^1001+x^1010999,那么对应的G(x,y)为G(x,y)=x+x^999+x*y+x^999*y^1010,即,对于每一个x,G(x,y)是关于y的一元多项式函数,且度d<1010,因此下图中的每一列所有点都是在度d<1010的多项式上,而不在d<1000的多项式式上。所以如果证明者任然宣称多项式P(x)的度d<1000,000,则会验证失败,其他场景是同样的道理

那有没有可能恶意证明者仍以G(x,y)=x+x^999+x*y+x^999*y^999的形式去生成证据呢?这样会验证通过吗?

我们知道,我们在验证时着重强调了对角线上的那一点一定要在多项式上,我们知道,此时对角线对应的多项式形式是

P(x)=x+x^999+x1001+x^999999,而实际的P(x),我们在这里标记为P`(x),其形式是:

P`(x)=x+x^999+x^1001+x^1010999

因此,如果验证者恰好选择的点是两个多项式的交点,则会验证通过,事实上,两个多项式最多有1000,000左右个交点,但是由于随机选取的点不是证明者自己选取,是由默克尔树的根为种子随机生成,因此证明者没有机会作恶,去可以选取那些能通过验证的点。

由于总共由10^9个点,因此随机选取一个点,能验证成功的概率为10^6/10^9=10^(-3),如果选择k行,则成功的概率仅为10^(-3k)。

以上可以看出,验证者和证明者只需要交互1010*2*k个点,就可以完成验证,假如k=10,则1010*2*10=20100<<10^6。

虽然上述实现了在交互次数小于D的情况下,完整LDT验证,但是证明者的复杂度过于庞大,至少10^18的复杂度远远大于原始的计算,因此需要一些优化方案,降低复杂度。话不多说,直接引入有限域,毕竟在实际项目中,我们可不希望数值本身过于庞大。直接引用费马小定理的结论:在有限域p内,如果满足(p-1)能被k整除,则映射x=>x^k的像只有(p-1)/k+1个。下图5以p=17,映射x=>x^2为例:

图中,红色为x^2在有限域p内的象,总共由(p-1)/2+1=9个。同时我们可以发现,9^2和8^2的像一致,10^2和7^2的像一致,以此类推,16^2和1^2的像一致,记住这个现象,对下一张图的理解有帮助。

因此,在本例中,我们选择一个素数p=1000,005,001,其满足:

为素数p-1能被1000整除p要大于10^9

因此,在有限域p内,x=>x^1000的像在p内有(p-1)/1000=1000,005个,因此图4可以变成图6的形式:

可以看出,列坐标变成了10^6个元素,对角线变成了平行的线条,总共有1000个。还记得上面费马小定理结论的特殊现象吗?这就是对角线这种分布的原因,读者试着去理解(可能读者会觉得,对角线应该是锯齿形,不是这种平行的形式,也许你是对的,但是这并不影响验证流程)。此时证明者的复杂度已经从10^18减少到了10^15次方,证明和验证过程和步骤3描述的仍然一致。

还能不能继续优化呢?答案是肯定的。回想起前面所述的验证过程,对于每一行/列,验证者都要获取1000个点进行插值得出一个度小于1000的多项式,仔细观察图6,对于每一行,原始数据里不就是有1000个数么?那我们干脆选这些点插值出一个度小于1000的多项式,然后只需要随机让证明者再计算任何一列,并且证明沿着列上的点都在度小于1000的多项式上,并且列上的点也在对应的利用原始数据插值出的行多项式上。此时,证明者复杂度从10^15减少到了10^9次方。总结:个人理解,从步骤1到步骤5,其实是PCP到IOP的选择过程。PCP要求证明者生成全部的证据,然后验证者多次随机选取其中的某一部分进行验证,但是这样,证明者的复杂度仍然很高;IOP要求证明者不用生成全部的证据,根据多次的交互,每次生成只需生成部分证据,使得证明的复杂度和D呈近似线性关系;证明者复杂度已经降低到了与D呈拟线性关系,验证者的复杂度虽然是亚线性,交互次数已经低于D,但是能不能优化到更低呢?基于证明复杂度的最优设置,我们继续探索验证复杂度的优化之路,回顾P(x)=x+x^999+x^1001+x^999999=x+x*(x^2)^499+x*(x^2)^500+x*(x^2)*499999,令G(x,y)=x+x*y^499+x*y^500+x*y^499999,则当y=x^2时,有G(x,y)=G(x,x^2)=x+x*(x^2)^499+x*(x^2)^500+x*(x^2)*499999=P(x)。最终的图应如下图7所示:

从图中可知:

证明则复杂度仍为10^9次方;每一行上的点都在度d<2的多项式上,因为当y取固定值时,G(x,y)就是关于x的一次多项式;每一列上的点都在度d<D/2的多项式上,证明者需要证明这个多项式是小于D/2的,假定这个多项式为P1(x),这个时候,并非验证者选取大于D/2个点去验证,因为验证复杂度仍然不够低,而是对这一列再一次用到类似于P(x)的处理过程,如图7中下面的图所示,以此循环,直到可以直接判断列上的多项式的度为止,类似于行。

总结

至此,本篇文章就结束了,总结下来,本文主要阐述了以下几个内容:

如何转换问题形式--Arithmetization为何需要LDT--为了验证简洁LDT的大概过程--二分法验证,类似于FFT降低LDT的复杂度--有限域+IOP

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

链链资讯

[0:15ms0-4:144ms