BIT:企业应避免的6大数据失误

这就是现代业务环境–无处不在的数据数据,绝不浪费!数据对于现代企业已经变得至关重要。在这个时代,甚至人工智能也受到大数据的支持。秘密在于能够收集,整理和整理来自各种来源的数据的能力。这带来了提高洞察力和做出基于数据的决策以增强业务能力的能力。杠杆作用从市场营销,内部工作流程扩展到企业销售。

现在,大数据进入了业务领域?让我们弄清这一点,对吧?

大数据和业务-关系在哪里?

由于现代技术的发展,所有行业,无论规模大小,都可以访问基于其运营和客户的细粒度和丰富的数据。这方面的主要障碍是处理海量数据,这些数据既难以维护又难以管理。尽管存在适当的工具,但是处理此类数据是繁琐的活动。

AOFEX携手赤兔云算,正式上线并开启IPFS云算力专场:据官方消息,AOFEX携手赤兔已上线全新云算力平台,现开启IPFS云算力专场,并于2021年6月12日17:00(GMT+8)开启认购,用户使用AQ即可参加。

AOFEX与赤兔达成的战略合作会持续为用户提供多算法、多币种的云挖矿服务和不同规模的加密数字货币挖矿能力的一站式解决方案,致力于共同推动数字金融衍生服务业务,让数字金融服务更好地普惠大众。[2021/6/11 23:30:50]

错误是频繁出现的,涉及处理大数据的复杂性层。但是,大数据为企业提供了多种杠杆。这包括-

增加收入

确保更好的收入决策

翁梓耀:从矿工、社区、宏观战略层面分析Filecoin/IPFS价值:IPFS100.com现场报道,2020年8月11日14:00,由DAP总冠名、大德资本、金色财经、PBank主办的2020第一届新经济资产数字化高峰论坛在深圳福田香格里拉大酒店拉开帷幕。在以《炒作还是实力——IPFS价值几何》为题的圆桌中,逆熵科技联合创始人&COO翁梓耀指出:Filecoin/IPFS生态是被市场所需要的。从矿工的角度来看,矿工们需要想象空间去继续矿业这个生态领域,因此矿工们需要Filecoin;从社区的角度来看,社区需要热度;从宏观战略层面来看,在每年750亿美元以上增速的分布式存储赛道上,数据将因为Filecoin而更加安全。综上,Filecoin是值得被关注的。[2020/8/11]

增强客户体验

HyperPay IPFS 云算力正式开启预挖功能:HyperPay钱包于北京时间2020年7月13日正式开启IPFS云算力预挖功能,用户在IPFS主网上线之前购买HyperPay相关云算力产品即可获得FIL6额外收益,不影响主网上线后挖矿收益,币赢交易所将为FIL6提供流动性支持。

凡是购买了HyperPayIPFS云算力的用户,自2020年7月13日起,都可在账户余额中查看FIL6预挖收益,用户可在主网上线前在币赢交易所交易FIL6,或在主网上线后1:1兑换FIL。[2020/7/13]

帮助产生更智能的服务和商品

提供更准确的业务运营

因此,大数据已成为创新型企业获得竞争优势的决定性杠杆。到2022年,全球这些数据的使用量肯定会超过2743亿,每个人每秒产生大约1.7兆字节的信息。

姚前:交易所丢币有可能是“监守自盗”,IPFS等是将来重要发展方向:7月12日上午,在清华大学公共管理学院与腾讯研究院联合打造的 “明德为公,智达行果-2020公益数字经济直播讲堂”,中国证券监督管理委员会科技监管局局长,信息中心主任姚前进行了直播,谈及“盗币”时表示,“币丢了,(很大程度)是你把私钥托管给某一个数字资产交易所,数字资产交易所没有保管好你的私钥,(甚至)很可能是监守自盗出现的资产丢失,对外就说数据被攻破、被破产。”

谈到IPFS时表示“金融科技实际上是算力突破某一个临界点之后,数据和算法的一个融合。一些技术完全可以融合。区块链链上数据非常宝贵,不可能存大量的数据。现在有人提出IPFS(分布式文件系统),怎么去和大数据分析结合起来,怎么通过区块链来让数据可信,怎么通过大数据分析来使得数据更具智慧,都是将来的重要发展方向。”

对于国内区块链产业发展,姚前表示,区块链应用在蓬勃发展,但代码抄袭现象严重,很多单位就复制了一个开源的东西改了改参数,就当作自己的独门秘籍来用,共识的方向、隐私保护的方向、安全的方向、跨链的技术,这些技术研究还是要深入,不能老抄人家东西。(吴说区块链)[2020/7/12]

有了这样的杠杆作用,您真的有能力承担有关大数据的错误的错误吗?因此,这是企业需要避免的一些大数据失误,以利用其全部功能并享受其带来的优势。

大数据的大错

尽管大数据带有高点,但低点并没有错误并不罕见。大数据问题包括–

运营效率低下

安全漏洞

结论不正确

-如果出现错误。因此,比方说,大数据就像信用卡一样-善用信用卡即可受益。不明智地使用它们,账单非常庞大!以下是企业在处理大数据时应避免的所列错误。继续阅读!

大失误1:分析瘫痪

问题:看来,许多企业通过庞大的数据收集而跳入大数据计划,对于“飞跃前的眼光”政策仍然不为人知。停滞的项目和分析的瘫痪是大数据分析中问题的必然结果。

解决方案:从“小步骤”开始,进入大数据世界。让您收集的数据反驳或支持您的假设。如果数据有歧义,请将其配对!

大失误2:以创新的名义抢占数据安全

问题:安全是处理大数据时首先要牺牲的方面。但是,如何减轻安全隐患呢?

解决方案:需要采用多方面的方法来保护大数据。这应该包括对拥有的数据的理解,审核数据的操作以及控制特权用户。确保使用整体和统一的流程和控制系统覆盖大数据安全性。

大失误3:消失的数据沙皇

问题:关于数据准确性和质量的投诉很常见。但是,企业未能了解其根源。缺乏对数据收集的中央监督会导致重复,列使用不正确,输入令人恐惧。

解决方案:指派一个委员会负责您企业的数据卫生。确保迫使大数据管理团队整理数据并培训用户。

失误4:将大数据拼图放入“闪存”

问题:大数据是一个巨大的拼图游戏,如果急于解决,那将是一个巨大的混乱。任何组织都没有能力解决如此巨大的难题。

解决方案:逐个区域或逐块地处理拼图。这将使您面临大数据挑战,而小数据挑战。这样,企业就足以应对这些挑战。这肯定可以减轻工作负担,对吗?

错误5:在筒仓中冥想数据

问题:收集和存储比特币可能是有利的,但这并不是数据的出路。因此,这对这样做的公司来说是大声疾呼–如果您只是收集数据而不是提取其实质并实施洞察力,那么筒仓冥想将无济于事。它增强操作或解决障碍并告知您的产品路线图的能力变得生锈。

解决方案:及时使用和提取其本质,还有什么!不要让它冥想或进入休眠状态!

大失误6:在口袋里挖一个复杂的工具

问题:具有较小数据集的企业通常倾向于采用大数据解决方案。这种快速的增长意味着对复杂工具的大量投资,这会给企业带来预算压力。

解决方案:组织应赞扬其数据分析,以领导大数据处理的明智决策。但是,并非所有问题都需要使用重量级的工具。“大数据”传统方法可以做到!

除了6个主要错误之外,还存在缺少工作流管理工具,焦外的ROI,数据未用于演化等问题。

避免犯错误是一项授权!

不论类型如何,大数据将在2020年及以后的所有业务中回响。对于专家和开发人员来说,这显然既是机遇,也是挑战。随着数据量的增加,它们将继续迁移到云中,并且根据预测,到2025年,全球数据领域将很快达到175ZB。机器学习的日益普及,首席数据官和数据科学家的需求增加,隐私仍然是人们一直关注的问题,可操作且快速的数据出现在最前面,这些都将使大数据成为重要的代表。

大数据的这种繁荣将为您的组织提供很多!您愿意放弃还是搞砸了?我们是这么认为的!

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

链链资讯

[0:0ms0-3:700ms