数字签名:基于椭圆曲线的签名方案

在数字时代中,数字化文档的认证性、完整性和不可否认性,是实现信息化安全的基本要求。数字签名则是满足上述要求的主要方式之一,亦是现代密码学的研究内容之一。

数字签名有哪些形式?基于密码学的数字签名优势几何?有哪些常用的数字签名实现方案?使用过程中又潜藏何等风险?我们将先从理解概念为始,再为大家逐步深入介绍。

区块链百科No.34:基于椭圆曲线签名方案

随着计算机信息处理能力的不断提高,对密钥长度的要求也越来越高,这个问题对于存储能力受限的系统来说显得尤为突出。

椭圆曲线密码体制(ECC)的提出改变了这种状况,它可以用更短的密钥提供与其他体制相当的或者更高级的安全,并已成为迄今被实践证明安全、有效、应用较广的3种公钥密码体制之一。本文将继续为大家介绍基于椭圆曲线的数字签名方案。

椭圆曲线在代数学和几何学上,已被广范研究了150年之久,有坚实的理论基础。

所谓椭圆曲线是指维尔斯特斯拉(Weierstrass)方程:

所确定的平面曲线,其中a、b、c、d、e属于域F,其可以是有理数域Q、复数域C,还可以是有限域GF(p)。

椭圆曲线是其上所有点(x、y)的集合,外加一个无穷远点O(定义椭圆曲线上一个特殊的点,记为O,它为仿射平面无穷远的点,称为无穷远点。在xOy平面上,可以看做平行于y轴的所有直线的集合的一种抽象)。

密码学中普遍采用的是有限域上的椭圆曲线,它是指椭圆曲线方程定义式中,所有的系数都是在某一有限域GF(p)中的元素。它最简单的公式为:

该椭圆曲线上只有有限个离散点,设为N,则N称为椭圆曲线的阶为N。N越大,安全性越高。基于此,椭圆曲线的图示可以表示如下:

当然,基于不同变量值,椭圆曲线还有其他的表示形式:

当我们仔细观察这些曲线时,能发现一些有趣特性:(1)对称性,即曲线上的任何一点都可以在x轴上反射,并保持曲线不变;(2)任何非垂直直线与曲线的交点至多有三个。

我们可以把这条曲线想象成一场桌球游戏。在曲线上取任意两点并通过它们画一条直线,它将与曲线相交于另一个位置。在这个桌球游戏中,你在A点拿一个球,把它射向B点,当它击中曲线时,球要么直接向上反弹(如果它在x轴以下),要么直接向下反弹(如果它在x轴以上)到曲线的另一边。我们可以把球看做在两个点间移动,曲线上的任意两点碰撞可得到一个新的点。

A·B = C

或者可以用某一个点自身不断碰撞出新的点。

A·A = B

A·C = D

……

在这个过程中,一个初始点经由n次运算会得到最后到达的点,当你只知道这两个点的值,要找出n是很难的。

这就像一个人在房间里随机玩一段时间桌球游戏,对他而言,按照上面描述的规则一遍又一遍地击球是很容易的。但如果有人走进房间,球刚好结束到达一个点,即使他知道所有的游戏规则,以及球从哪个点开始,也不能确定球到达此处所被击中的次数。容易正向计算,难以反向计算,这也是陷门函数的基础。

1985年,Koblitz和Miller将椭圆曲线引入密码学,提出了基于有限域GF(p)的椭圆曲线上的点集构成群,在这个群上定义离散对数难题并构造出基于其的一类公钥密码体制,即基于椭圆曲线的离散密码体制,其安全性基于椭圆曲线上离散对数问题的难解性。

我们以基于椭圆曲线的ECDSA数字签名实现方案为例,阐述其具体的实现过程。

密钥生成算法

假设GF(p)为有限域,E是有限域GF(p)上的椭圆曲线。选择E上一点G∈E,G的阶为满足安全要求的素数n,即nG=O(O为无穷远点)。

选择一个随机数d,d∈[1,n-1],计算Q,使得Q=dG。那么公钥为(n,Q),私钥为d。

签名算法

假设待签名的消息为m,经过如下计算过程,签名者对消息m的数字签名为(r,s)。

验证算法

签名接收者B对消息m签名(r,s)的验证过程如下:

判断r和r1的关系,如果相等,则签名有效;否则,签名无效。

除了上述介绍ECDSA方案之外,基于椭圆的数字签名方案还有很多,而类似DSA的其他方案例如Schnorr、EIGamal等方案也都被移植到椭圆曲线有限群上。

从上述介绍可知,数字签名的安全性依赖于基于椭圆曲线的有限群上的离散对数难题。

与前章所述RSA数字签名和基于有限域离散对数的数字签名相比,基于椭圆曲线的数字签名方案具有如下特点:在相同的安全强度条件下,签名长度短,密钥存储空间小,适用于存储空间有限,带宽受限、要求高速实现的场合。

此外,椭圆曲线资源丰富,同一有限域上存在着大量不同的椭圆曲线,这也为安全性增加了额外的保障。

正是由于椭圆曲线具有丰富的群结构和多选择性,并可以在保持和RSA、EIGamal体制同样安全性的前提下大大缩短密钥长度,因而有着更为广阔的应用场景。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

链链资讯

MATIC7.10早间行情:BTC现画门走势 接下来这么看

昨晚行情短暂的上冲9400美元后直接跳水,最低点位跌至9160美元,当前在9200附近震荡,虽然只是200美元的跌幅,却令前天的上涨付之东流,在盘面上形成一道“门”字形,打破了好不容易铸造的良好形态,也给好不容易有转好迹象的市场情绪破了一盘冷水,可以确认的是,前天甚至昨天市场一直在构造有意的诱多走势。

SOL金色观察丨比特币“入侵”以太坊能增强DeFi系统吗?

金色财经  区块链7月7日讯   加密货币里有各种不同的生态系统,即使在采矿方面,项目也遵循不同的方向。比如,比特币希望成为一种货币和一种支付手段,使用工作量证明算法进行挖矿,专注于成为新的主导货币的加密货币;而以太坊则希望成为一个去中心化的生态系统应用,通过构建基于区块链的工具来改变社会的其他支柱。

SOL金色观察 | 从这些数据看 以太坊依然能够轻松击败EOS和TRon

今年4月,比特币开发者Udi Wertheimer发推表示,像Tron/EOS /ETC这类很容易就会吞噬掉无用的以太坊“ DApps”的全部市场份额。这是明摆着的。人们选择以太坊的唯一原因是意识形态,而当谈到基础设施意识形态时,大多数人并没有意识形态。 诚然,Tron、EOS自诞生以来就一直标榜以太坊,并有势必超越以太坊的气势。

XMR欲知企业数据权利边界 且看《数据安全法》

在《数据安全法》(草案)以及《金融数据安全 数据安全分级指南》(送审稿)披露之际,关于数据权利边界的问题,再次引发学界及实践热议。今天,我们仅结合经典案例,谈一谈企业在数据处理中享有的权利内容。 某宝公司设立某线上交易集合平台,供各类商户自行售卖自家商品。同时,某宝公司也利用商户与消费者的交易信息,开发出零售电商数据产品“生意参谋”。

[0:31ms0-3:333ms